
Game Over: Black to Play and Draw in Checkers 187

GAME OVER: BLACK TO PLAY AND DRAW IN CHECKERS 
 
 

Jonathan Schaeffer1 
 

Edmonton, Alberta, Canada 
 
 

ABSTRACT 
 

In 1989, an effort to solve the game of checkers began. It was naïve 
because of the daunting size of the search space, 5×1020 positions, and 
because of computer capabilities of the time. Nevertheless the work 
continued, with the final calculation completing in 2007. The result? 
Perfect play by both sides leads to a draw. Checkers is the largest popular 
game that has been solved to date. 

 
1. INTRODUCTION 
 

In 1994, the checkers-playing program CHINOOK won the World Man-Machine Checkers Championship (the 
8×8 game using the rules popular in North America and the former British Commonwealth) (Schaeffer, 1997). 
The obstacle to this success was the incredible Marion Tinsley, World Champion on-and-off from 1952 to 
1995.2 During this period, comprising over 1,000 competitive tournament and match games, he lost only three 
times! Tinsley was as close to perfection in checkers as is humanly possible, and his incredible record is 
unmatched by any champion of any serious competitive game. Tinsley passed away in 1995. 
 
Despite overwhelming evidence that the level of computer play at checkers was much stronger than that of the 
top human players in the world, many in the checkers world doubted that any computer program could play at 
a higher level than Tinsley. There was only one way to prove computer superiority. Given Tinsley’s near-
perfect record, it was necessary to build a perfect checkers player. The game had to be solved. 
 
There are three levels to solving a game (Allis, 1994). 
 
Ultra-weakly solved : The perfect-play result of the game has been determined but a strategy for achieving that 
result is not known. For example, Hex is a first player win, but no one knows the winning strategy (Van den 
Herik, Uiterwijk, and Van Rijswijck, 2002). 
 
Weakly solved : The perfect-play result of the game has been determined and a strategy for achieving that result 
is known. Several games have been weakly solved, including Connect Four (Allis, 1988; Allen, 1989), Qubic 
(Allis, 1994), Go Moku (Allis, 1994), and Nine Men’s Morris (Gasser, 1995). 
 
Strongly solved : For all possible legally reachable positions for the game, the perfect-play result is known. 
Strongly solved games include Awari (Romein and Bal, 2003) and 6-piece chess endgames. 
 
Note the above definitions are conditional on there being a reasonable amount of resources available. In some 
sense, all two-player perfect-information zero-sum games (such as chess) can be solved since, given enough 
time, an alpha-beta search will eventually return the perfect-play result. Resource constraints preclude such 
impractical “solutions”. 
 
The difficulty of solving a game has been characterized as comprising two dimensions (Allis, 1994): 

• space complexity, the size of the search space, and 
• decision complexity, the difficulty of making correct move decisions. 

                                                           
1 Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2E8. E-mail: 
jonathan@cs.ualberta.ca. 
2 Tinsley won his first World Championship in 1952. In 1958, with no suitable challengers in sight, he retired and 
relinquished the title. He returned in 1970 and earned the right to play for the World Championship. However, the world 
champion was ill and Tinsley went back into retirement without playing for the title. In 1975, he came back and won the 
title. He held it until retiring in 1991. He was then made World Champion Emeritus, which he held until passing away in 
1995. 
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The space complexity is easy to measure. Checkers has a large search-space complexity relative to the 
capabilities of modern technology (5×1020 positions, see Table 1). The game-tree complexity is discussed in 
Subsection 3.6. The search-space size is not enough to characterize the difficulty of solving a game; one also 
needs to know how hard it is to make correct move decisions. That is, if the search complexity represents the 
size of the tree that has to be searched, then the decision complexity represents the challenge of deciding which 
branch to choose at an interior node. Unfortunately, there is no well-defined metric for measuring decision 
complexity. Checkers can be characterized as having multiple move choices (an average of six, see Subsection 
3.6), non-trivial decision-making (many move choices lead to a non-optimal result; best moves may not be 
obvious), and long games. All games solved thus far have either lower search complexity than checkers (Nine 
Men’s Morris, size 1011; Awari, size 1012), lower decision complexity (Qubic; Go-Moku), or both (Connect 
Four, size 1014). 
 
In 1989, a program began running to compute endgame databases that would be useful for solving the game of 
checkers. This program (and others) has run almost continuously, often in parallel on multiple processors, until 
April 29, 2007. On that date the computation ended by announcing that checkers had been solved: perfect play 
by both players leads to a draw (see Figure 1A). In other words, a checkers-playing program that is enhanced 
with our checkers proof tree can never lose. Given that Tinsley occasionally made losing moves, one may 
conclude that computers now play checkers better than all human players – including Tinsley. 
 
This article discusses the techniques used to solve checkers. The checkers result was announced in the journal 
Science (Schaeffer et al., 2007). That paper is summarized and more insights and implementation details are 
added. Section 2 provides a brief chronology of the effort to solve checkers. Section 3 discusses the algorithms 
used and some of the subtleties needed to achieve high performance. Section 4 presents some data on the proof 
computation and Section 5 provides conclusions.  
 
The checkers proof tree, supporting data, and CHINOOK checkers program are online at 
http://www.cs.ualberta.ca/~chinook. 
 

  
 A  B 
Figure 1: Black to play and draw. (A) Standard starting board. (B) Square numbers used for move notation. 

 
2. CHRONOLOGY 
The following is a brief chronology of the 18-year effort to solve the game of checkers (Schaeffer, 1997). 
 
1989: Work on solving checkers began by developing an endgame database construction program. This was 

used to construct the 4-piece databases (7 million positions; see Table 1). They were a key reason for 
CHINOOK’s success in the first Computer Olympiad. 
Work started on the 5-piece databases (149 million positions), but Ken Thompson completed them 
first and shared his results with us. 

1990: The 6-piece databases (2.5 billion positions) were completed. CHINOOK won the right to play for the 
human World Checkers Championship by coming second to World Champion Tinsley in the biennial 
United States Checkers Championship. 

1991: The 7-piece databases (35 billion positions) were completed. 
1992: CHINOOK narrowly lost the First Man-Machine World Checkers Championship match to Tinsley. In 

the match, CHINOOK used the 7-piece databases and a small subset of the 8-piece databases. 
1993: The 4-piece versus 4-piece subset of the 8-piece databases was completed (111 billion positions). 
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1994: CHINOOK won the Second Man-Machine World Checkers Championship when Tinsley withdrew after 
six games (all draws) citing illness. 

1996: The entire 8-piece databases was completed (406 billion positions). 
1997: Efforts to compute the 9-piece databases were stopped. Going from 8 to 9 pieces crossed the boundary 

of what was possible (given our current algorithms) for a machine using a 32-bit word. The code was 
not working and further effort was stopped in favor of waiting until technology caught up. 64-bit 
processors were not yet commonplace. 

2001: The checkers project was restarted. The availability of compilers and libraries that supported 64-bit 
operations made converting the endgame database construction code easy. Construction of the 9-piece 
databases began. 

2002: Construction of the 9-piece database was aborted. A special case in the code was not being properly 
handled, necessitating restarting the calculations from scratch. The 9-piece calculations finished later 
in the year (4 trillion positions) and the 10-piece database computation began. 
Implementation of the front-end solver began. This program would start searching at the start of the 
game, trying to find a proof leading to the endgame databases. 

2003: Full-scale testing of the front-end solver. 
2004: The 5-piece versus 5-piece portion of the 10-piece databases completed (8.5 trillion positions). Ed 

Gilbert started independently computing these databases and comparing his results with ours. 
Began solving our first opening, the White Doctor (10-14, 22-18, 12-16; see Figure 1B). 

2005: In January, the White Doctor was solved and passed all of our correctness consistency checks. 
Coincidentally, in January Ed Gilbert reported that his endgame database calculations differed from 
ours. On one subset of the database, his count of the number of wins differed from ours by one. A 
hectic two weeks of recalculations followed before the difference was resolved. Our results were 
correct. His program was also correct but he had a corrupted data file, the result of a copying a file 
without verifying that the copy was a duplicate of the original. 
The complete 10-piece database computation finished (35 trillion positions). This involved computing 
the 6-piece versus 4-piece, 7 versus 3, 8 versus 2, and 9 versus 1 subsets of the database. Although 
this may seem an uninteresting computation, in reality it is important to the proving process. In 
particular, the 6-piece versus 4-piece subset allows numerous losing lines of play (and unlikely to be 
on the critical part of the final proof tree) to be quickly eliminated from consideration. 
Began computations to solve the minimal set of 19 openings needed to prove the perfect-play result for 
checkers. 

 

Pieces Number of Positions Pieces Number of Positions 

1 120 11 259,669,578,902,016 

2 6,972 12 1,695,618,078,654,976 

3 261,224 13 9,726,900,031,328,256 

4 7,092,774 14 49,134,911,067,979,776 

5 148,688,232 15 218,511,510,918,189,056 

6 2,503,611,964 16 852,888,183,557,922,816 

7 34,779,531,480 17 2,905,162,728,973,680,640 

8 406,309,208,481 18 8,568,043,414,939,516,928 

9 4,048,627,642,976 19 21,661,954,506,100,113,408 

10 34,778,882,769,216 20 46,352,957,062,510,379,008 

  21 82,459,728,874,435,248,128 

  22 118,435,747,136,817,856,512 

  23 129,406,908,049,181,900,800 

  24 90,072,726,844,888,186,880 

Total 1-10 39,271,258,813,439 Total 1-24 500,995,484,682,338,672,639 

Table 1: The number of positions in the game of checkers. 
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2007: On April 29 the computations came to an end and the final result was revealed: draw. Immediately 
afterwards, re-verification of the minimal proof tree began. It was completed four months later. 
On July 19 the proof was formally announced. The result had been submitted to the journal Science 
and the formal announcement had to coincide with the publication of the paper.  
 

The 1989 effort to solve checkers turned out to be naïve given the size of the search space and the capabilities 
of computers at that time. Were one to re-compute the checkers proof from scratch today, it would take only a 
few years (3 to 5) given a cluster of 50 computers. Of course, this is not reflective of the real effort involved 
since it does not include the cost of developing the algorithms, inventing new ideas, and the painful setbacks 
caused by bugs and data errors. 
 
3. SOLVING CHECKERS 
 
The proof process is similar in structure to that used by Ralph Gasser (2005) for solving Nine Men’s Morris, a 
combination of building endgame databases (solving from the end of the game back towards the start of the 
game) and heuristic search (solving from the start of the game forward towards the proven results in the 
databases). The proof procedure has four algorithm/data components (Schaeffer et al., 2005).  
 
(1) Endgame databases (backward search). Computations from the end of the game backward have resulted in 

a database of 3.9×1013 positions (≤10 pieces on the board) for which the game-theoretic value has been 
computed (strongly solved). See Subsection 3.1. 

(2) Proof solver (forward search). The solver is assigned positions to search that are of interest to furthering 
the progress of the proof. Given a position, this component uses two programs with different search 
algorithms to determine the value of the position. One program uses alpha-beta search and the other uses a 
variant of proof number search (Allis, 1994). See Subsection 3.2. 

(3) Proof tree manager (search management). This component maintains a tree of the proof in progress, 
traverses it, and generates positions that need to be explored by the solvers to further the proof's progress. 
See Subsection 3.3. 

(4) Seeding (expert input). From the human literature, a single line of “best play” is identified. This is fed to 
the proof tree manager as the initial line to explore. See Subsection 3.4. 
 

The overall process is illustrated in Figure 2. It plots the number of pieces on the board (vertically) versus the 
logarithm of the number of positions (using the data in Table 1). The endgame database phase of the proof is 
the shaded area; all positions with ≤ 10 pieces. The inner oval area illustrates that only a portion of the search 
space is relevant to the proof. Positions may be irrelevant because they are unreachable or are not required for 
the proof. The small circles illustrate positions with more than 10 pieces for which a value has been proven by 
a solver. The solid line from the start of the game to the endgame databases illustrates the current line of best 
play being considered (initially the seeded line of play). The figure also shows the boundary between the top of 
the proof tree that the manager sees (and stores on disk) and the parts that are computed by the solvers (and are 
not saved to reduce disk storage needs). 
 
3.1 Endgame Databases 
The endgame databases were built using retrograde analysis (Schaeffer et al., 2003). The computation of 39 
trillion positions (39,271,258,813,439 positions; see Table 1) were broken down into thousands of smaller 
calculations. Most of the computations were computed using a network of workstations (typically using 10-20 
at a time). A few of the larger subsets were computed using a 64-processor SGI computer with 64 GB of RAM. 
 
The checkers databases are roughly an order of magnitude larger than the entire search space of awari and are 
roughly comparable to the size of Connect-Four. 
 
The databases only contain the win/loss/draw result, without the number of moves to conversion. This decision 
was made early on in the project, to minimize the size of the database and thus maximize the size of the 
databases that could be built. We do not know the longest winning line in the 10-piece databases. Ed Gilbert 
has computed a 279-ply 10-piece win for an uninteresting position with eight kings on the board (Gilbert, 
2005). We can only speculate how many more ply would be needed to solve positions with fewer kings. 
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The databases are compressed into roughly 250 GB. The data organization allows for rapid decompression to 
access a specific position. We have a better compression scheme that reduces the database size by roughly 30% 
(Schaeffer et al., 2003). However it is not used since the decompression cost is too high for a real-time search. 

 
Figure 2: The solving process (Schaeffer et al., 2007). 
 
The implicit knowledge contained in the 10-piece databases exceeds human capabilities. One striking example 
is shown in Figure 3. Roughly around the year 1800 this position was posed as an interesting challenge: can 
White to play win this position For the next 100 years there were arguments back and forth in the checkers 
literature on purported solutions. One person’s claim of a win would be refuted by another’s claim that the 
analysis was flawed. Around the year 1900 interest in the position died and the final word – White win – was 
accepted. In recognition of the roughly 100 years that this position attracted people’s attention, the position 
was named the 100-Year Position. 

 
In 1997 Grandmaster Don Lafferty challenged us to solve this position. 
With the 8-piece databases, it took only a few seconds to return the 
verdict: draw. (Today this position requires only a single database lookup 
to return the correct result.) On seeing the drawing line of play, Lafferty 
informed us that the human analysts missed a move early on (retreating a 
well-placed piece, a common source of human oversights). Once Lafferty 
saw the key move, then the rest of the analysis became “obvious” to him. 
It is interesting to note that the published human analysis ran hundreds of 
ply deep. The position has been renamed the 197-Year Position, in 
recognition of the almost two centuries that were needed to get the 
definitive result. 
 

Figure 3: The 100-Year Position   The proof would not have been realizable in a reasonable amount of time  
(White to move).   without the 10-piece databases. In effect, they provide a 3.9x1013 position 
    search frontier of terminal nodes. With that in mind, the question was 
whether the frontier could be extended to the 11-piece databases. Computing the complete set of 11-piece 
databases was quickly ruled out. The number of positions grows roughly by an order of magnitude, and no 
member of the checkers team had the desire to baby-sit such a long-running computation. However, analysis of 
the 11-piece positions being accessed in the solvers’ searches indicated that most of the benefits would come 
from positions with one or zero kings on the board. Hence we developed new technology for constructing 
imperfect information databases (Björnsson, Schaeffer, and Sturtevant, 2006). In an imperfect information 
database, most of the fringe positions (in our case, positions that were about to transition into a position with 
two or more kings on the board) were classified as unknown. Working backwards, a modified retrograde 
analysis program can solve (win, loss, draw), partially solve (<= draw, >= draw), or not solve (unknown) a 
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position. As one gets further away from the fringe, an increasing percentage of positions can be solved or 
partially solved. The result was a database with high-quality and useful information. 
 
Experiments with the partial 11-piece database were disappointing. The ability of the databases to cutoff search 
effort at an earlier stage in the proof resulted in smaller search trees; factors of two were not uncommon. 
Unfortunately, the additional 10 GB of disk led to dramatically increased I/O costs. The new databases were 
frequently accessed. This significantly affected the spatial and temporal locality for accessing the rest of the 
databases. The result was that almost all the tree reduction savings were offset by the increased amount of I/O. 
Sadly, the current version of the checkers solver does not use the imperfect information 11-piece databases. 
 
3.2  Proof Solvers 
The solver uses two programs to try and determine the perfect-play result of a position. These programs have 
different capabilities, and often one will find a result that the other cannot. 
 
The first program used is CHINOOK. CHINOOK does a deep alpha-beta search. The search is limited to 15 
seconds, reaching a search depth in the range of 17 to 23 ply plus search extensions. The result of this search 
may be sufficient for the proof manager and the second program may not need to be invoked. CHINOOK can 
find proven wins or proven losses. It is not efficient at finding proven draws.  
 
The second program uses the Df-pn algorithm (Nagai, 2002) to do a space-efficient proof number search on the 
position. The search is limited to 100 seconds. It will return one of three types of results: proven (win, loss, 
draw), bounded (at least a draw, at most a draw) or unknown. 
 
One important subtlety in checkers (and chess) is the graph-history interaction problem. The search tree is 
really a search graph. Traditional search algorithms treat the search as a tree and may miss some subtleties 
associated with the graph. As part of this project, an efficient way of detecting and correcting graph-history 
interaction problems was developed (Kishimoto and Müller, 2004). 
 
3.3  Proof Tree Manager 
The proof tree manager is responsible for maintaining the proof tree. It traverses the tree, identifies positions 
that need to be searched to further the proof, and then assigns the positions to the proof solvers to analyze. The 
solvers search their positions and report back the result of their efforts. The manager then updates the proof 
tree and identifies new work to be done. This continues until the proof is complete. 
 
The proof tree manager uses proof number search (with small changes to use additional information returned 
by the solvers). Leaf nodes of interest in the proof tree are given to the proof solvers to search. They return 
three pieces of information: the proof result (if known), a heuristic score (if needed), and a warning flag (if 
needed). 
 
Ideally, one wants the proof manager to zero in on the outline of the proof tree as quickly as possible, and then 
flesh out the details. This can be achieved using a new iterative search algorithm. Instead of iterating on the 
search depth, as seen in iterative deepening, the proof manager iterates on a range of possible values in the 
proof tree. The following description of our value iteration algorithm is taken from (Schaeffer et al., 2005). 
 
Iterative deepening in game-playing programs is used for several reasons, one of which is to improve search 
efficiency by using the tree from iteration i as the basis for starting iteration i +1. The assumption is that 
increasing the depth does not cause substantial changes to the tree structure; each iteration refines the previous 
iteration’s solution. In contrast, without iterative deepening, the search can go off in the wrong direction and 
waste lots of effort before stumbling on the best line of play. 
 
Our iterative value solution works for similar reasons. A position may require considerable effort to determine 
its proven value. However, the higher/lower the score of the position, the more likely it is a win/loss. Rather 
than invest the effort to prove such a position, this work is postponed until it has been shown to be needed. 
This is done by introducing two new values to the proof tree: likely win and likely loss. 
 
All searches are done relative to a heuristic threshold h. For non-proven positions, the manager uses the 
heuristic assessment assigned by the CHINOOK search. Any position with a heuristic score ≥ h is considered a 
likely win; any score ≤ -h is a likely loss. The proof manager repeatedly traverses the proof tree identifying 
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nodes to be searched, treating likely wins as wins, and likely losses as losses. The h threshold can be loosely 
thought of as imposing a symmetric search window on the best-first proof manager. Only positions with a non-
proven value between –h and h are considered by the manager. The manager keeps working until it can 
generate a proof tree with no non-proven nodes in the value window. The range of possible values seen by the 
proof manager is illustrated in Figure 4. 
 
Once the proof tree is complete for a given heuristic threshold, the threshold is increased and the search 
restarted to construct a proof for the new threshold. Any position that was previously resolved to a real proven 
value remains proven, and positions that have a heuristic score that remain outside the new heuristic threshold 
remain likely wins/losses. Only non-proven positions with heuristic values inside the new threshold are now 
considered, and they must be re-searched with the new heuristic limit. This iterative process continues until the 
heuristic threshold exceeds the largest possible heuristic value. At this point all likely wins/losses have been 
resolved, and the proof tree is complete. 
 
Consider the following example. Assume that h = 100 (the value of a checker). The proof manager identifies a 
set of positions to explore and hands them off to the solvers. Some of these positions will get proven results or 
bounds; the rest will get heuristic values. Those positions with a value ≥ 100 are considered to be wins (not 
unreasonable, given that a deep search indicates a large advantage), while those with values ≤ -100 are 
considered to be lost. The proof tree is updated with the solver scores and the manager generates more work. 
This continues until the manager solves this game (for h = 100). But the proof is not done… it was based on 
assuming some positions as likely wins and losses, not proven wins and losses. The manager iterates and 
increases h, in this case to 110. Most of the tree will not change. Positions with values between –h and +h don’t 
need to be considered. Likely won positions with scores > 110 remain likely wins and likely loss positions with 
scores < -110 remain likely losses. Only positions with values in the range -109..-100 and 100..109 have to be 
considered. Once this game is proven, h is increased to 120, and so on. 
 
Ideally, after the first likely proof tree is constructed, the work would consist solely of trying to prove that the 
likely wins/losses are even more likely wins/losses. In practice, the heuristics we use are occasionally wrong 
(they are, after all, only heuristics), and a proof tree for a position may grow large enough that other previously 
less desirable positions become a more attractive alternative for expansion. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Values seen by the proof manager. 
 
3.4  Seeding 
Starting the proof tree manager off with an empty proof tree will work but may be inefficient. The manager 
may flail about trying to find a main line of play to expand that leads to the perfect-play result. Instead this 
process can be bootstrapped. There is a vast literature available on checkers openings, and it seems a shame to 
ignore it. 
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When starting a proof, the manager is seeded with a line of best play that is taken from the human literature 
(Fortman, 2007). These “best” lines of play have been vetted by checkers grandmasters and are thought to 
contain no errors.3 
 
Although these lines may be correct and lead to the perfect-play result, they may not be the line of play that 
leads to the least effort to solve. The proof manager will initially explore the seeded line, as more search 
information becomes available it may prefer to explore a different main line of play. From our experience, 
seeding never hurts performance and often leads to a major reduction in the time needed to complete the first 
iteration of the proof. 

 
3.5  Proof Numbers 
Traditionally, the value of a (dis)proof number is zero, one or infinity. Combining and backing up proof 
numbers is sufficient to count the minimum number of leaf nodes that remain to be proven to conclude the 
proof. However this does not necessarily reflect the difficulty of achieving the proof. We explored numerous 
ways of setting the proof numbers to reflect the difficulty of achieving a proven result. 
 
Our initial attempt to set (dis)proof numbers was based on two considerations. First, the fewer pieces on the 
board, the “closer” one is to a database position and the easier it should be to prove. Hence, we can use large 
proof numbers when there are a large number of pieces on the board. Second, it should be easier to prove a win 
or a loss if one side has more pieces than the other side. The larger the material difference between the two 
sides, the smaller the proof number. These two factors were successfully used to solve our first checkers 
opening (Schaeffer, 2005). Unfortunately, the proof took depressingly long to compute (almost six months). 
Analysis of subsequent checkers openings identified single positions that took weeks to prove (if we did not 
abort the effort out of frustration). Clearly there was room for improvement. 
 
Checkers, like chess, has the problem of wandering pieces. In checkers, a king can roam the board without 
making any real progress towards concluding the game. To prove a position drawn, the program may end up 
moving the king to all possible squares in a futile attempt to find a win. Making any non-reversible move (such 
as moving a checker that has no significant impact on the outcome) can start the wandering all over again. 
Only when all possible scenarios have been exhausted can the program conclude the draw. Worse yet, if both 
sides have kings, then there can be a multiplicative effect in the number of possible lines that need to be 
examined. Thus, the presence of kings can increase the effort needed to solve a position. 
 
The first advance was to assign a large proof number to any position in the proof master where each side had a 
king. Thus the proof master would avoid these positions. This led to an improvement, but the proofs were still 
unacceptably long. The above scheme was simplistic in that the positions were being penalized once the 
wandering pieces problem had occurred. Instead, it was important to have the proof process avoid exploring 
lines that led to having kings on the board.  
 
The second advance was to enhance the solver so that when a heuristic score was returned, it also passed back 
a warning flag. If the position at the end of a solver’s principal variation contained at least one king, then the 
warning flag would be set. This information would be used by the proof master to penalize the proof number 
for this position. There are no kings on the board, but there is a real danger that further exploration of this line 
will lead to kings. Note that this does not preclude the proof master exploring these lines of play; the higher 
proof numbers only discourage exploration of this sub-tree. 
 
The result of adding the warning flag was immediately noticeable; proofs seemed to conclude much faster. We 
have not yet done a thorough experiment to quantify the effects of the above changes. However, from our 
experience it is obvious that proof numbers should be reflective of the effort required to solve a position. Other 
researchers have used non-unary proof numbers to aid their search efforts. To the best of our knowledge, the 
analysis of a principal variation to indicate the difficulty of a proof is a new idea. 
 
3.6  Game-Tree Complexity 
Although only peripherally related to this paper, I want to use this opportunity to correct an error in the 
literature, one that I unwittingly helped to create. The branching factor for checkers is widely reported to be 2.8 

                                                           
3 We have no reason to disagree. Extensive computer analysis of the checkers openings has not found any error in the main 
lines of play. We have, however, found numerous errors in non-popular lines. 
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and the average length of games as being 70 ply. This leads to a game-tree complexity of 2.870 = 1031 (Allis, 
1994). 
 
These numbers came from experiments that I conducted in the early 1990s for Victor Allis, and were reported 
in his thesis (Allis, 1994). By instrumenting CHINOOK, it was easy to count the number of legal moves 
considered at each position in a search tree, and then average over all such positions. Unfortunately, this 
experiment was flawed for at least three reasons. First, CHINOOK’s search algorithm favors considering capture 
positions since they lead to smaller search trees. Capture positions obviously have a small branching factor. In 
a CHINOOK search, the frequency of capture positions is disproportionately high. Second, transposition tables 
and the history heuristic reinforce the first point, by repeatedly suggesting the same positions and moves. 
Finally, what happens in the depths of a search tree is not reflective of what happens in an actual game. 
 
Several games databases have been analyzed (including all the games by Tinsley and CHINOOK) and the results 
show an average branching factor in capture positions of 1.20 and in non-capture positions of 7.94 (both 
numbers are similar to those reported to Allis). The overall branching factor over the course of a typical game 
is 6.14. Games last an average of 50.4 ply. This leads to a game-tree complexity of 6.1450 = 1040. This 
represents updated numbers from those reported in (Schaeffer et al., 2007). Chess has a game-tree complexity 
of 1083, reinforcing the approximation that checkers is the square root of chess. 
 
4. RESULTS 
 
Perfect-play checkers leads to a draw. The proof was accomplished by considering 19 checkers openings. Each 
checkers opening is the first three moves (3-ply) of the game. Even though there are roughly 400 possible 
starting 3-move sequences, the vast majority can be eliminated due to transpositions and alpha-beta cutoffs. 
The checkers forced capture rule can be used to further reduce the number of openings. Figure 5 shows the first 
three ply of the proof tree and the result of each leaf node. The moves are given using the standard square-
numbering notation, as shown in Figure 1b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: First three ply of the proof tree. 
 
Table 2 gives some statistics on each of the 19 openings that have been solved. Note that some opening results 
are bounded (≤ Draw). We only needed the bound to prove the root value. At the time of this writing, ongoing 
computations are working on turning these bounds into proven results (Loss or Draw).  
 
Table 2 shows the number of positions considered by the proof-tree manager. When a proof is completed, the 
tree is pruned to eliminate the work that was done but ended up not being part of the proof. The resulting 
minimal tree sizes are given (these are not necessarily the absolutely smallest proof trees; just the smallest one 
that can be built from our computations). The table does not include two openings that have additionally been 
solved but are not in the minimal proof tree and two openings that are currently being computed. 
 
The max ply statistic is the deepest position that needed to be considered by the proof-tree manager (94 ply so 
far in a minimal tree). That position was then subjected to a deep search, either alpha-beta or Df-pn (could be 
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as much as 50 ply). At the leaf node of this search was a database position, possibly representing the result of 
hundreds of ply of retrograde analysis. Clearly checkers is a game requiring deep analysis! 
 
The proof techniques were tested on the White Doctor opening (10-14, 22-18, 12-16) (Schaeffer et al., 2005), 
an opening of historical interest, but not part of the minimal set of openings needed to solve checkers. Once the 
White Doctor was validated, we began proving the game in earnest. Solving the 19 openings took roughly two 
years, running on between 10 and 50 processors (with roughly an average close to 25 over that period). Of 
course, during this time we also made algorithmic advances (see Section 3.5) that could help reduce the time 
needed to complete the proof. 
 

# Opening Proof Searches Max ply Minimal size Max ply 
1 09-13 22-17 13-22 Draw 736,984 56 275,097 55 
2 09-13 21-17 05-09 Draw 1,987,856 154 684,403 85 
3 09-13 22-18 10-15 Draw 715,280 103 265,745 58 
4 09-13 23-18 05-09 Draw 671,948 119 274,376 94 
5 09-13-23-19 11-16 Draw 964,193 85 358,544 71 
6 09-13 24-19 11-15 Draw 554,265 53 212,217 49 
7 09-13 24-20 11-15 Draw 1,058,328 59 339,562 58 
8 09-14 23-18 14-23 Draw 2,427,759 77 688,196 75 
9 10-14 23-18 14-23 Draw 1,422,488 58 424,352 55 
10 10-15 22-18 15-22 Draw 948,511 60 342,514 60 
11 11-15 22-18 15-22 Draw 1,152,011  67 401,245 59 
12 11-16 23-19 16-23 ≤Draw 1,969,641 69 565,202 64 
13 12-16 24-19 09-13 Loss 205,385 44 49,593 40 
14 12-16 24-19 09-14 Loss 176,001 49 50,174 42 
15 12-16 24-19 10-14 Loss 38,759 33 16,418 33 
16 12-16 24-19 10-15 Loss 151,304 40 41,465 35 
17 12-16 24-19 11-15 Loss 107,980 37 42,020 37 
18 12-16 24-19 16-20 ≤Draw 283,353 49 113,210 49 
19 12-16 24-19 08-12 Draw 404,375 61 159,982 61 

 Table 2: Search statistics. 
 
5. CONCLUSION 
 
The checkers computations will continue, albeit at a slower pace. Idle machines will be used to solve additional 
openings, with the goal of eventually solving all three-move checkers openings. Without additional computing 
resources, however, this will take many years. 
 
Since the checkers result was announced in Science, I have been inundated with media requests. Almost every 
interview includes one of two following questions (and often both). The first question is “When will chess be 
solved?” We do not know the exact size of the chess search space, but something in the range of 1040 to 1050 
seems reasonable. I usually say that checkers is the square root of chess (and, roughly, chess is the square root 
of Go). The gap between checkers and chess is enormous, a point that is hard to impress on the media. Current 
technology is incapable of solving chess, even given a century of time and massive parallelism. Without a 
fundamental breakthrough in computing technology (quantum computing?), chess remains unsolvable in the 
practical sense. 
 
The second question that is most often asked is “Will solving checkers lead to the death of the game?” Even 
many checkers players are concerned about the game’s future. 
 
This bleak forecast seems to be completely unjustified. People play checkers for the love of the game. They 
play because of their competitive spirit, for their desire for social interaction, for the intellectual challenge and 
stimulation, and for the beauty of the game. None of these are affected by the presence of a perfect checkers 
program. As a strong chess player, it has never bothered me that there were, say, 10,000 stronger chess players 
in the world than me. If a computer comes along and makes it 10,001, does it really matter? 
Now that checkers is done, what is the next popular game to be solved? It may very well be two-player Texas 
Hold’em limit poker. This is an interesting domain because of the stochastic elements (random dealing of 
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cards) and the hidden information (one does not know the opponent’s cards). Near-optimal solutions have been 
computed for game sizes of 1012, still a long way from the 1018 needed (Zinkevitch et al., 2007). However, 
anticipated algorithm improvements, access to massive parallelism, and access to large-memory computers 
may lead to a solution in less than 10 years. 
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